DagsterDocs

Source code for dagster.core.definitions.executor

from enum import Enum
from functools import update_wrapper
from typing import Any, Dict, Optional

from dagster import check
from dagster.builtins import Int
from dagster.config.field import Field
from dagster.core.definitions.configurable import (
    ConfiguredDefinitionConfigSchema,
    NamedConfigurableDefinition,
)
from dagster.core.definitions.reconstructable import ReconstructablePipeline
from dagster.core.errors import DagsterUnmetExecutorRequirementsError
from dagster.core.execution.retries import RetryMode, get_retries_config

from .definition_config_schema import convert_user_facing_definition_config_schema


class ExecutorRequirement(Enum):
    """
    An ExecutorDefinition can include a list of requirements that the system uses to
    check whether the executor will be able to work for a particular pipeline execution.
    """

    # The passed in IPipeline must be reconstructable across process boundaries
    RECONSTRUCTABLE_PIPELINE = "RECONSTRUCTABLE_PIPELINE"

    # The DagsterInstance must be loadable in a different process
    NON_EPHEMERAL_INSTANCE = "NON_EPHEMERAL_INSTANCE"

    # Any solid outputs on the pipeline must be persisted
    PERSISTENT_OUTPUTS = "PERSISTENT_OUTPUTS"


def multiple_process_executor_requirements():
    return [
        ExecutorRequirement.RECONSTRUCTABLE_PIPELINE,
        ExecutorRequirement.NON_EPHEMERAL_INSTANCE,
        ExecutorRequirement.PERSISTENT_OUTPUTS,
    ]


[docs]class ExecutorDefinition(NamedConfigurableDefinition): """ Args: name (str): The name of the executor. config_schema (Optional[ConfigSchema]): The schema for the config. Configuration data available in `init_context.executor_config`. If not set, Dagster will accept any config provided. requirements (Optional[List[ExecutorRequirement]]): Any requirements that must be met in order for the executor to be usable for a particular pipeline execution. executor_creation_fn(Optional[Callable]): Should accept an :py:class:`InitExecutorContext` and return an instance of :py:class:`Executor` required_resource_keys (Optional[Set[str]]): Keys for the resources required by the executor. """ def __init__( self, name, config_schema=None, requirements=None, executor_creation_fn=None, description=None, ): self._name = check.str_param(name, "name") self._requirements = check.opt_list_param( requirements, "requirements", of_type=ExecutorRequirement ) self._config_schema = convert_user_facing_definition_config_schema(config_schema) self._executor_creation_fn = check.opt_callable_param( executor_creation_fn, "executor_creation_fn" ) self._description = check.opt_str_param(description, "description") @property def name(self): return self._name @property def description(self): return self._description @property def config_schema(self): return self._config_schema @property def requirements(self): return self._requirements @property def executor_creation_fn(self): return self._executor_creation_fn def copy_for_configured(self, name, description, config_schema, _): return ExecutorDefinition( name=name, config_schema=config_schema, executor_creation_fn=self.executor_creation_fn, description=description or self.description, requirements=self.requirements, ) # Backcompat: Overrides configured method to provide name as a keyword argument. # If no name is provided, the name is pulled off of this ExecutorDefinition.
[docs] def configured( self, config_or_config_fn: Any, name: Optional[str] = None, config_schema: Optional[Dict[str, Any]] = None, description: Optional[str] = None, ): """ Wraps this object in an object of the same type that provides configuration to the inner object. Args: config_or_config_fn (Union[Any, Callable[[Any], Any]]): Either (1) Run configuration that fully satisfies this object's config schema or (2) A function that accepts run configuration and returns run configuration that fully satisfies this object's config schema. In the latter case, config_schema must be specified. When passing a function, it's easiest to use :py:func:`configured`. name (Optional[str]): Name of the new definition. If not provided, the emitted definition will inherit the name of the `ExecutorDefinition` upon which this function is called. config_schema (Optional[ConfigSchema]): If config_or_config_fn is a function, the config schema that its input must satisfy. If not set, Dagster will accept any config provided. description (Optional[str]): Description of the new definition. If not specified, inherits the description of the definition being configured. Returns (ConfigurableDefinition): A configured version of this object. """ name = check.opt_str_param(name, "name") new_config_schema = ConfiguredDefinitionConfigSchema( self, convert_user_facing_definition_config_schema(config_schema), config_or_config_fn ) return self.copy_for_configured( name or self.name, description, new_config_schema, config_or_config_fn )
[docs]def executor( name=None, config_schema=None, requirements=None, ): """Define an executor. The decorated function should accept an :py:class:`InitExecutorContext` and return an instance of :py:class:`Executor`. Args: name (Optional[str]): The name of the executor. config_schema (Optional[ConfigSchema]): The schema for the config. Configuration data available in `init_context.executor_config`. If not set, Dagster will accept any config provided for. requirements (Optional[List[ExecutorRequirement]]): Any requirements that must be met in order for the executor to be usable for a particular pipeline execution. """ if callable(name): check.invariant(config_schema is None) check.invariant(requirements is None) return _ExecutorDecoratorCallable()(name) return _ExecutorDecoratorCallable( name=name, config_schema=config_schema, requirements=requirements )
class _ExecutorDecoratorCallable: def __init__(self, name=None, config_schema=None, requirements=None): self.name = check.opt_str_param(name, "name") self.config_schema = config_schema # type check in definition self.requirements = requirements def __call__(self, fn): check.callable_param(fn, "fn") if not self.name: self.name = fn.__name__ executor_def = ExecutorDefinition( name=self.name, config_schema=self.config_schema, executor_creation_fn=fn, requirements=self.requirements, ) update_wrapper(executor_def, wrapped=fn) return executor_def
[docs]@executor( name="in_process", config_schema={ "retries": get_retries_config(), "marker_to_close": Field(str, is_required=False), }, ) def in_process_executor(init_context): """The default in-process executor. In most Dagster environments, this will be the default executor. It is available by default on any :py:class:`ModeDefinition` that does not provide custom executors. To select it explicitly, include the following top-level fragment in config: .. code-block:: yaml execution: in_process: Execution priority can be configured using the ``dagster/priority`` tag via solid metadata, where the higher the number the higher the priority. 0 is the default and both positive and negative numbers can be used. """ from dagster.core.executor.init import InitExecutorContext from dagster.core.executor.in_process import InProcessExecutor check.inst_param(init_context, "init_context", InitExecutorContext) return InProcessExecutor( # shouldn't need to .get() here - issue with defaults in config setup retries=RetryMode.from_config(init_context.executor_config.get("retries", {"enabled": {}})), marker_to_close=init_context.executor_config.get("marker_to_close"), )
[docs]@executor( name="multiprocess", config_schema={ "max_concurrent": Field(Int, is_required=False, default_value=0), "retries": get_retries_config(), }, requirements=multiple_process_executor_requirements(), ) def multiprocess_executor(init_context): """The default multiprocess executor. This simple multiprocess executor is available by default on any :py:class:`ModeDefinition` that does not provide custom executors. To select the multiprocess executor, include a fragment such as the following in your config: .. code-block:: yaml execution: multiprocess: config: max_concurrent: 4 The ``max_concurrent`` arg is optional and tells the execution engine how many processes may run concurrently. By default, or if you set ``max_concurrent`` to be 0, this is the return value of :py:func:`python:multiprocessing.cpu_count`. Execution priority can be configured using the ``dagster/priority`` tag via solid metadata, where the higher the number the higher the priority. 0 is the default and both positive and negative numbers can be used. """ from dagster.core.executor.init import InitExecutorContext from dagster.core.executor.multiprocess import MultiprocessExecutor check.inst_param(init_context, "init_context", InitExecutorContext) return MultiprocessExecutor( max_concurrent=init_context.executor_config["max_concurrent"], retries=RetryMode.from_config(init_context.executor_config["retries"]), )
default_executors = [in_process_executor, multiprocess_executor] def check_cross_process_constraints(init_context): from dagster.core.executor.init import InitExecutorContext check.inst_param(init_context, "init_context", InitExecutorContext) if ExecutorRequirement.RECONSTRUCTABLE_PIPELINE in init_context.executor_def.requirements: _check_intra_process_pipeline(init_context.pipeline) if ExecutorRequirement.NON_EPHEMERAL_INSTANCE in init_context.executor_def.requirements: _check_non_ephemeral_instance(init_context.instance) def _check_intra_process_pipeline(pipeline): if not isinstance(pipeline, ReconstructablePipeline): raise DagsterUnmetExecutorRequirementsError( 'You have attempted to use an executor that uses multiple processes with the pipeline "{name}" ' "that is not reconstructable. Pipelines must be loaded in a way that allows dagster to reconstruct " "them in a new process. This means: \n" " * using the file, module, or repository.yaml arguments of dagit/dagster-graphql/dagster\n" " * loading the pipeline through the reconstructable() function\n".format( name=pipeline.get_definition().name ) ) def _check_non_ephemeral_instance(instance): if instance.is_ephemeral: raise DagsterUnmetExecutorRequirementsError( "You have attempted to use an executor that uses multiple processes with an " "ephemeral DagsterInstance. A non-ephemeral instance is needed to coordinate " "execution between multiple processes. You can configure your default instance " "via $DAGSTER_HOME or ensure a valid one is passed when invoking the python APIs." )