DagsterDocs

Source code for dagster.core.definitions.resource

from collections import namedtuple
from functools import update_wrapper
from typing import TYPE_CHECKING, AbstractSet, Any, Callable, Dict, Optional, Union, cast

from dagster import check
from dagster.core.definitions.config import is_callable_valid_config_arg
from dagster.core.definitions.configurable import AnonymousConfigurableDefinition
from dagster.core.errors import DagsterInvalidDefinitionError, DagsterUnknownResourceError
from dagster.utils.backcompat import experimental_arg_warning

from ..decorator_utils import (
    get_function_params,
    is_required_param,
    positional_arg_name_list,
    validate_expected_params,
)
from .definition_config_schema import (
    IDefinitionConfigSchema,
    convert_user_facing_definition_config_schema,
)

if TYPE_CHECKING:
    from dagster.core.execution.resources_init import InitResourceContext


[docs]class ResourceDefinition(AnonymousConfigurableDefinition): """Core class for defining resources. Resources are scoped ways to make external resources (like database connections) available to solids during pipeline execution and to clean up after execution resolves. If resource_fn yields once rather than returning (in the manner of functions decorable with :py:func:`@contextlib.contextmanager <python:contextlib.contextmanager>`) then the body of the function after the yield will be run after execution resolves, allowing users to write their own teardown/cleanup logic. Depending on your executor, resources may be instantiated and cleaned up more than once in a pipeline execution. Args: resource_fn (Callable[[InitResourceContext], Any]): User-provided function to instantiate the resource, which will be made available to solid executions keyed on the ``context.resources`` object. config_schema (Optional[ConfigSchema): The schema for the config. If set, Dagster will check that config provided for the resource matches this schema and fail if it does not. If not set, Dagster will accept any config provided for the resource. description (Optional[str]): A human-readable description of the resource. required_resource_keys: (Optional[Set[str]]) Keys for the resources required by this resource. A DagsterInvariantViolationError will be raised during initialization if dependencies are cyclic. version (Optional[str]): (Experimental) The version of the resource's definition fn. Two wrapped resource functions should only have the same version if they produce the same resource definition when provided with the same inputs. """ def __init__( self, resource_fn: Optional[Callable[["InitResourceContext"], Any]] = None, config_schema: Optional[Union[Any, IDefinitionConfigSchema]] = None, description: Optional[str] = None, required_resource_keys: Optional[AbstractSet[str]] = None, version: Optional[str] = None, ): self._resource_fn = check.opt_callable_param(resource_fn, "resource_fn") self._config_schema = convert_user_facing_definition_config_schema(config_schema) self._description = check.opt_str_param(description, "description") self._required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys" ) self._version = check.opt_str_param(version, "version") if version: experimental_arg_warning("version", "ResourceDefinition.__init__") @property def resource_fn(self) -> Optional[Callable[["InitResourceContext"], Any]]: return self._resource_fn @property def config_schema(self) -> IDefinitionConfigSchema: return self._config_schema @property def description(self) -> Optional[str]: return self._description @property def version(self) -> Optional[str]: return self._version @property def required_resource_keys(self) -> Optional[AbstractSet[str]]: return self._required_resource_keys
[docs] @staticmethod def none_resource(description: Optional[str] = None) -> "ResourceDefinition": """A helper function that returns a none resource. Args: description ([Optional[str]]): The description of the resource. Defaults to None. Returns: [ResourceDefinition]: A resource that does nothing. """ return ResourceDefinition.hardcoded_resource(value=None, description=description)
[docs] @staticmethod def hardcoded_resource(value: Any, description: Optional[str] = None) -> "ResourceDefinition": """A helper function that creates a ``ResourceDefinition`` with a hardcoded object. Args: value (Any): A hardcoded object which helps mock the resource. description ([Optional[str]]): The description of the resource. Defaults to None. Returns: [ResourceDefinition]: A hardcoded resource. """ return ResourceDefinition(resource_fn=lambda _init_context: value, description=description)
[docs] @staticmethod def mock_resource(description: Optional[str] = None) -> "ResourceDefinition": """A helper function that creates a ``ResourceDefinition`` which wraps a ``mock.MagicMock``. Args: description ([Optional[str]]): The description of the resource. Defaults to None. Returns: [ResourceDefinition]: A resource that creates the magic methods automatically and helps you mock existing resources. """ from unittest import mock return ResourceDefinition.hardcoded_resource( value=mock.MagicMock(), description=description )
@staticmethod def string_resource(description: Optional[str] = None) -> "ResourceDefinition": return ResourceDefinition( resource_fn=lambda init_context: init_context.resource_config, config_schema=str, description=description, ) def copy_for_configured( self, description: Optional[str], config_schema: IDefinitionConfigSchema, _ ) -> "ResourceDefinition": return ResourceDefinition( config_schema=config_schema, description=description or self.description, resource_fn=self.resource_fn, required_resource_keys=self.required_resource_keys, version=self.version, ) # This allows us to pass resource definition off as a function, so that it can inherit the # metadata of the wrapped function. def __call__(self, *args, **kwargs): return self
class _ResourceDecoratorCallable: def __init__( self, config_schema: Optional[Dict[str, Any]] = None, description: Optional[str] = None, required_resource_keys: Optional[AbstractSet[str]] = None, version: Optional[str] = None, ): self.config_schema = config_schema # checked by underlying definition self.description = check.opt_str_param(description, "description") self.version = check.opt_str_param(version, "version") self.required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys" ) def __call__(self, resource_fn: Callable[["InitResourceContext"], Any]): check.callable_param(resource_fn, "resource_fn") any_name = ["*"] params = get_function_params(resource_fn) missing_positional = validate_expected_params(params, any_name) if missing_positional: raise DagsterInvalidDefinitionError( f"@resource decorated function '{resource_fn.__name__}' expects a single " "positional argument." ) extras = params[len(any_name) :] required_extras = list(filter(is_required_param, extras)) if required_extras: raise DagsterInvalidDefinitionError( f"@resource decorated function '{resource_fn.__name__}' expects only a single positional required argument. " f"Got required extra params {', '.join(positional_arg_name_list(required_extras))}" ) resource_def = ResourceDefinition( resource_fn=resource_fn, config_schema=self.config_schema, description=self.description, version=self.version, required_resource_keys=self.required_resource_keys, ) update_wrapper(resource_def, wrapped=resource_fn) return resource_def
[docs]def resource( config_schema: Optional[ Union[Callable[["InitResourceContext"], Any], IDefinitionConfigSchema, Dict[str, Any]] ] = None, description: Optional[str] = None, required_resource_keys: Optional[AbstractSet[str]] = None, version=None, ) -> Union[ Callable[[Callable[["InitResourceContext"], Any]], "ResourceDefinition"], "ResourceDefinition" ]: """Define a resource. The decorated function should accept an :py:class:`InitResourceContext` and return an instance of the resource. This function will become the ``resource_fn`` of an underlying :py:class:`ResourceDefinition`. If the decorated function yields once rather than returning (in the manner of functions decorable with :py:func:`@contextlib.contextmanager <python:contextlib.contextmanager>`) then the body of the function after the yield will be run after execution resolves, allowing users to write their own teardown/cleanup logic. Args: config_schema (Optional[ConfigSchema]): The schema for the config. Configuration data available in `init_context.resource_config`. If not set, Dagster will accept any config provided. description(Optional[str]): A human-readable description of the resource. version (Optional[str]): (Experimental) The version of a resource function. Two wrapped resource functions should only have the same version if they produce the same resource definition when provided with the same inputs. required_resource_keys (Optional[Set[str]]): Keys for the resources required by this resource. """ # This case is for when decorator is used bare, without arguments. # E.g. @resource versus @resource() if callable(config_schema) and not is_callable_valid_config_arg(config_schema): return _ResourceDecoratorCallable()(config_schema) def _wrap(resource_fn: Callable[["InitResourceContext"], Any]) -> "ResourceDefinition": return _ResourceDecoratorCallable( config_schema=cast(Optional[Dict[str, Any]], config_schema), description=description, required_resource_keys=required_resource_keys, version=version, )(resource_fn) return _wrap
class Resources: """This class functions as a "tag" that we can use to type the namedtuple returned by ScopedResourcesBuilder.build(). The way that we create the namedtuple returned by build() is incompatible with type annotations on its own due to its dynamic attributes, so this tag class provides a workaround.""" class IContainsGenerator: """This class adds an additional tag to indicate that the resources object has at least one resource that has been yielded from a generator, and thus may require teardown.""" class ScopedResourcesBuilder( namedtuple("ScopedResourcesBuilder", "resource_instance_dict contains_generator") ): """There are concepts in the codebase (e.g. solids, system storage) that receive only the resources that they have specified in required_resource_keys. ScopedResourcesBuilder is responsible for dynamically building a class with only those required resources and returning an instance of that class.""" def __new__( cls, resource_instance_dict: Optional[Dict[str, Any]] = None, contains_generator: Optional[bool] = False, ): return super(ScopedResourcesBuilder, cls).__new__( cls, resource_instance_dict=check.opt_dict_param( resource_instance_dict, "resource_instance_dict", key_type=str ), contains_generator=contains_generator, ) def build(self, required_resource_keys: Optional[AbstractSet[str]]) -> Resources: """We dynamically create a type that has the resource keys as properties, to enable dotting into the resources from a context. For example, given: resources = {'foo': <some resource>, 'bar': <some other resource>} then this will create the type Resource(namedtuple('foo bar')) and then binds the specified resources into an instance of this object, which can be consumed as, e.g., context.resources.foo. """ required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys", of_type=str ) # it is possible that the surrounding context does NOT have the required resource keys # because we are building a context for steps that we are not going to execute (e.g. in the # resume/retry case, in order to generate copy intermediates events) resource_instance_dict = { key: self.resource_instance_dict[key] for key in required_resource_keys if key in self.resource_instance_dict } # If any of the resources are generators, add the IContainsGenerator subclass to flag that # this is the case. if self.contains_generator: class _ScopedResourcesContainsGenerator( namedtuple("_ScopedResourcesContainsGenerator", list(resource_instance_dict.keys())), # type: ignore[misc] Resources, IContainsGenerator, ): def __getattr__(self, attr): raise DagsterUnknownResourceError(attr) return _ScopedResourcesContainsGenerator(**resource_instance_dict) # type: ignore[call-arg] else: class _ScopedResources( namedtuple("_ScopedResources", list(resource_instance_dict.keys())), # type: ignore[misc] Resources, ): def __getattr__(self, attr): raise DagsterUnknownResourceError(attr) return _ScopedResources(**resource_instance_dict) # type: ignore[call-arg]
[docs]def make_values_resource(**kwargs: Any) -> ResourceDefinition: """A helper function that creates a ``ResourceDefinition`` to take in user-defined values. This is useful for sharing values between solids. Args: **kwargs: Arbitrary keyword arguments that will be passed to the config schema of the returned resource definition. If not set, Dagster will accept any config provided for the resource. For example: .. code-block:: python @solid(required_resource_keys={"globals"}) def my_solid_a(context): print(context.resources.globals["my_str_var"]) @pipeline( mode_defs=[ ModeDefinition( resource_defs={"globals": make_values_resource(my_str_var=str, my_int_var=int)} ) ] ) def my_pipeline(): my_solid() Returns: ResourceDefinition: A resource that passes in user-defined values. """ return ResourceDefinition( resource_fn=lambda init_context: init_context.resource_config, config_schema=kwargs or Any, )